

Topological Data Analysis and Clustering Algorithms in Machine Learning

İsmail GÜZEL

Mathematical Engineering - İTÜ

2 Hierarchical Clustering

- Topological Data Analysis
- Theoretical Contributions

5 Experimental Contributions

Hierarchical Clustering and Zeroth Persistent Homology

İsmail GÜZEL¹ Atabey KAYGUN ² ¹igunlişilu edutr ¹iştanbul Technical University

Introduction

- 3 Topological Data Analysis
- 4 Theoretical Contributions
- 5 Experimental Contributions

Outline

Introduction

2 Hierarchical Clustering

Topological Data Analysis

4 Theoretical Contributions

5 Experimental Contributions

Outline

Introduction

2 Hierarchical Clustering

- Topological Data Analysis
- 4 Theoretical Contributions

5 Experimental Contributions

PERSISTENT HOMOLOGY, MATROIDS AND COBORDISMS

İSMAIL GÜZEL AND ATABEY KAYGUN

"Data has shape, and shape has meaning."

Prof. Gunnar Carlsson

Figure: The data taken from SCOPUS

Questions answered

- What are the similarities and differences between hierarchical clustering and 0-th persistent homology?
- What is the difference from the persistence barcode?
- What about higher dimensional persistent homology?
- What are the experiments on real datasets?

Hierarchical Clustering

- Unsupervised machine learning algorithm
- Aim: divide the data set into disjoint subsets such that
 - homogeneous in cluster
 - heterogeneous between clusters

- The metric structure of ambient space from data set.
- A nice tree-based representation, called *a dendrogram*

Ismail Guzel (İTÜ)

Ph.D. Thesis

Compare Dendrograms

- Two Dendrograms
- Two cophenetic matrix

Mantel Test

- Non-parametric Test
- Like correlation coefficient
- Mantel statistic $r \in [-1, 1]$

Silhouette scores

Silhouette scores

$$s(x) = \frac{b(x) - a(x)}{\max(a(x), b(x))},$$

$$a(x) = d(x, U(x)) \quad \text{and} \quad b(x) = \min_{C \neq U(x)} d(x, C).$$

	Tekirdağ	İstanbul	Balıkesir	Manisa	İzmir	Konya	Antalya
Tekirdağ	0						
İstanbul	132	0					
Balıkesir	379	390	0				
Manisa	511	529	141	0			
İzmir	506	564	176	35	0		
Konya	794	662	551	534	550	0	
Antalya	850	718	505	428	444	322	0

Points	Cohesion	Separation	Silhouette				
Tekirdağ	132	465.3	0.72				
İstanbul	132	494.5	0.73				
Balıkesir	158.5	384.5	0.59				
Manisa	88	428	0.79				
İzmir	105.5	444	0.76				
Konya	0	322	1				
Antalya	0	322	1				
Overall silhouette score is $s \approx 0.80$							

Simplicial Technology

Point Cloud to Complex

Čech Complex

$$\mathscr{C}_{\varepsilon} = \left\{ \sigma \subseteq \mathscr{D} \quad | \quad \bigcap_{x \in \sigma} B_{\varepsilon}(x) \neq \varnothing \right\}, \quad B_{\varepsilon}(x) = \{ y \mid d(x, y) < \varepsilon \}$$

Vietoris Rips Complex

$$\mathscr{R}_{\varepsilon} = \{ \sigma \subset \mathscr{D} \mid \|x - y\| \leq \varepsilon, \text{ for all } x, y \in \sigma \}$$

Example: A Simplicial complex \mathscr{K}

$$\begin{aligned} & \mathscr{C}_0 = \{ v_0, v_1, v_2, v_3, v_4, v_5 \}, \\ & \mathscr{C}_1 = \frac{\{ [v_0, v_1], [v_1, v_2], [v_2, v_0], [v_2, v_3], \\ & [v_3, v_4], [v_4, v_5], [v_3, v_5] \} \\ & \mathscr{C}_2 = \{ [v_3, v_4, v_5] \}. \end{aligned}$$

$$0 \xrightarrow{\partial_3} \mathscr{C}_2 \xrightarrow{\partial_2} \mathscr{C}_1 \xrightarrow{\partial_1} \mathscr{C}_0 \xrightarrow{\partial_0} 0$$

Homology

The k^{th} homology group of \mathcal{K} is defined by

$$H_k(K) := \frac{\ker(\partial_k)}{\dim(\partial_{k+1})}$$

$$\beta_0 = \dim(\ker(\partial_0)) - \dim(\operatorname{im}(\partial_1)) = 6 - 5 = 1$$

$$\beta_1 = \dim(\ker(\partial_1)) - \dim(\operatorname{im}(\partial_2)) = 2 - 1 = 1$$

Vietoris-Rips Filtration

Filtration of a simplicial complex K is a collection of subcomplexes $\mathbb{K} = \{K_{\varepsilon} : \varepsilon \in \mathbb{R}^+\}$ that satisfy $K_{\varepsilon_1} \subseteq K_{\varepsilon_2}$ whenever $\varepsilon_1 \leq \varepsilon_2$.

Ismail Guzel (İTÜ)

Ph.D. Thesis

Ismail Guzel (İTÜ)

Ph.D. Thesis

Ismail Guzel (İTÜ)

Ph.D. Thesis

Ismail Guzel (İTÜ)

Ph.D. Thesis

March 13, 2022

15 / 33

Ph.D. Thesis

Ismail Guzel (İTÜ)

Ph.D. Thesis

Ph.D. Thesis

Ismail Guzel (İTÜ)

Ph.D. Thesis

March 13, 2022

15/33
Persistent Homology

Filtered Vietoris-Rips complex

$$R_{\mathcal{E}_1} \hookrightarrow R_{\mathcal{E}_2} \hookrightarrow \cdots \hookrightarrow R_{\mathcal{E}_i} \hookrightarrow \cdots \hookrightarrow R_{\mathcal{E}_j} \hookrightarrow \cdots \hookrightarrow R_{\mathcal{E}_{max}}$$

After applying the homology functor,

$$H_k(R_{\varepsilon_1}) o H_k(R_{\varepsilon_2}) o \cdots o H_k(R_{\varepsilon_i}) o \cdots o H_k(R_{\varepsilon_j}) o \cdots o H_k(R_{\varepsilon_{max}})$$

For every pair $\varepsilon_i, \varepsilon_j$

$$\psi^k_{arepsilon_i,arepsilon_j}: H_k(R_{arepsilon_i}) o H_k(R_{arepsilon_j})$$

Definition

The k-th persistent homology group is

$$PH_k := \operatorname{im} \psi_{\varepsilon_i,\varepsilon_j}^k.$$

Go Forward

Persistent Homology - Big Picture

17 / 33

$$D = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 Rank = 2

$$D = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 Rank = 2

$$D_{\alpha,\beta} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$
 Rank = 2

$$\partial_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \partial_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 Rank = 3
$$D_{\beta,\gamma} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 Rank = 3
$$D_{\alpha,\gamma} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Homological Distance

Given a point cloud *P*, construct the Rips Complex

$${\mathcal R}_{arepsilon}({\mathcal P}) = \{ \sigma \subset {\mathcal P} \mid \|x-y\| \leq arepsilon, ext{ for all } x, y \in \sigma \}$$

*R*_{\varepsilon_1} ⊆ *R*_{\varepsilon_2} for a given pair \varepsilon_1 and \varepsilon_2 values with \varepsilon_1 ≤ \varepsilon_2
For the pair \varepsilon_1 < \varepsilon_2 we have the natural map in homology.

$$\psi^k_{\varepsilon_1,\varepsilon_2}: H_k(R_{\varepsilon_1}) \to H_k(R_{\varepsilon_2})$$

• Take two cycles $lpha,\ eta\in H_k(\mathscr{R}_{arepsilon_1})$

• $\alpha' := \psi_{\varepsilon_1, \varepsilon_2}^k(\alpha)$ and $\beta' := \psi_{\varepsilon_1, \varepsilon_2}^k(\beta)$ by padding α and β with suitable number of 0's.

Homological Distance

- Add α' , β' and α', β' together to the differential matrix \mathscr{D}^t at ε_2 .
- Calculate rank of the differential matrices.
- Check whether $\psi^k_{\varepsilon_1,\varepsilon_2}(\alpha)$ and $\psi^k_{\varepsilon_1,\varepsilon_2}(\beta)$ are linearly dependent.

Homological Distance

k-th homological cophenetic distance $D_k(\alpha, \beta)$ between homology classes α and β is defined as $\inf \left\{ \eta - \varepsilon \ge 0 \mid \psi_{\varepsilon,n}^k(\alpha), \psi_{\varepsilon,n}^k(\beta) \text{ non-zero and lin. dep.} \right\}$

Experiments

A synthetic point cloud

- $D\in \mathbb{R}^2$ and |D|=20 ,
- Uniform distribution over [0,1),
- Labeled with the first 20 letters.

Input: A point cloud *D*, |D| = 20 and a list $\varepsilon = \{\varepsilon_1 = 0, 0.05, \dots, 0.95, \varepsilon_{max} = 1\}$. **Output:** Dendrograms

begin

 $\begin{array}{l} \mathsf{HomDist} = []_{20 \times 20} \\ \mathscr{R}_{\varepsilon}(P) \longleftarrow \mathsf{Vietoris-Rips filtration} ; \\ \mathsf{for } each \varepsilon \ \mathsf{do} \\ & | \ \mathsf{for } every \ \alpha_i, \alpha_j \in H_0(\mathscr{R}_{\varepsilon}) \ \mathsf{do} \\ & | \ \mathsf{HomDist}_{i,j} \longleftarrow \inf\{\varepsilon | check \ lin. \ dep.\} ; \\ & \mathsf{end} \end{array}$

end

 $E(D) \leftarrow EuclideanDist(D);$ $Dend_1 \leftarrow HierarchicalClustering(HomDist(D));$ $Dend_2 \leftarrow HierarchicalClustering(E(D));$ $Compare(Dend_1, Dend_2)$

end

Two dendrograms with single-linkage

Experimental Contributions

Tanglegram with the entanglement of 0.01

Barcode and Enriched Barcode

Turkish Cities and Mantel Statistics

- 24 Türkiye cities
- Single-linkage
- Different metrics
- Dendrograms

Metrics	Bray-Curtis	Cosine	Manhattan	Euclidean	Minkowski	Homological
Bray-Curtis	1.00	0.64	0.96	0.90	0.90	0.90
Cosine		1.00	0.61	0.52	0.69	0.59
Manhattan			1.00	0.96	0.87	0.97
Euclidean				1.00	0.75	0.98
Minkowski					1.00	0.78
Homological						1.00

Turkish Cities and Mantel Statistics

- 24 Türkiye cities
- Single-linkage
- Different metrics
- Dendrograms

Metrics	Bray-Curtis	Cosine	Manhattan	Euclidean	Minkowski	Homological
Bray-Curtis	1.00	0.64	0.96	0.90	0.90	0.90
Cosine		1.00	0.61	0.52	0.69	0.59
Manhattan			1.00	0.96	0.87	0.97
Euclidean				1.00	0.75	0.98
Minkowski					1.00	0.78
Homological						1.00

Table: Datasets used and their properties.

Dataset	#Instances	#Attributes	Supervised	#Classes
Turkish Cities	82	2	No	-
lris	150	4	Yes	3
Cancer Coimbra	116	10	Yes	2
Synthetic (total separation)	100	100	Yes	4
Synthetic (with mixture)	100	2	Yes	4

Silhouette Scores

Synthetic Perfect

Synthetic Mixed

Silhouette Scores

Cancer Coimbra

A comparison of metrics on Mixed Synthetic datasets.

Synthetic Dataset

Metric	F1	Acc.	Hom.	Comp.	M.Info	Rand
Bray-Curtis	1.00 A	1.00 A	1.00 A	1.00 A	1.38 A	1.00 A
Cosine	0.83 A	0.91 A	0.72 C	0.77 S	1.38 C	0.87 A
Manhattan	1.00 S	1.00 S	1.00 S	1.00 S	0.99 S	1.00 S
Euclidean	1.00 A	1.00 A	1.00 A	1.00 A	1.38 A	1.00 A
Minkowski	1.00 C	1.00 C	1.00 C	1.00 C	1.38 C	1.00 C
Homological	0.98 A	0.99 A	0.95 A	1.00 S	1.31 A	0.98 A

A comparison of metrics on Cancer datasets.

Real Dataset

Metric	F1	Acc.	Hom.	Comp.	M.Info	Rand
Bray-Curtis	0.56 S	0.56 S	0.02 A	0.14 S	0.02 A	0.50 S
Cosine	0.55 C	0.55 C	0.01 S	0.12 S	0.01 S	0.50 C
Manhattan	0.53 S	0.53 S	0.02 A	0.13 A	0.02 A	0.50 S
Euclidean	0.54 W	0.54 W	0.02 A	0.13 A	0.02 A	0.50 W
Minkowski	0.53 S	0.53 S	0.02 A	0.13 A	0.02 A	0.50 S
Homological	0.61 W	0.61 W	0.03 W	1.00 S	0.02 W	0.52 W

BAP, TÜBİTAK, Michigan State University, Other Works

BASARIM2022

Classification of Stochastic Processes with Topological Data Analysis

İsmail Güzel Mathematical Engineering İstanbul Technical University İstanbul, Türkiye iguzel@itu.edu.tr Atabey Kaygun Mathematical Engineering İstanbul Technical University İstanbul, Türkiye kaygun@itu.edu.tr

SIAM Data Mining: TDA, ML

A Case Study on Identifying Bifurcation and Chaos with CROCKER Plots

İsmail Güzel *

Elizabeth Munch[†] Firas Khasawneh[‡]

Abstract

The CHOCKSR plot is a coarsened but easy to visualize representation of the data in a one-parameter varying family operastence barcodes. In this paper, we use the CROCKER plot to vise changes in the periodence under a varying hidreadon parameter. We perform experiments to support our methods using the the Lyapunov exponent.

Erzincan Üniversitesi Fen Bilimleri Enstittsü Dergisi 2022, 15(ÖZEL SAYI I), 1-13 ISSN: 1307-9085, e-ISSN: 2149-4584 Araştırma Makalesi Erzincan University Journal of Science and Technology 2022, 15(SPECIAL ISSUE I), 1-13 DOI: 10.18185/erzifbed.1199660 Research Article

Attitudes and Behaviors of Turkish Consumers Regarding the Olive Oil Consumption

Ümit ALTUNTAŞ^{1,2}*^(D), İsmail GÜZEL³^(D), Özlem YILMAZ⁴^(D), Sibel ULUATA⁵^(D),

Beraat ÖZÇELİK¹

¹Istanbul Technical University, Department of Food Engineering, 34469, Istanbul, Türkiye "Gümdahane University, Dyartment of Food Engineering, 29100, Gümdahane, Türkiye ³Istanbul Technical University, Mathematical Engineering Department, 5000, Baybun, Türkiye "Bayburt University, Hetel, Restaurant and Catering Department, 6900, Bayburt, Türkiye "Inonu University, Department of Food Engineering, 44209, Malaya, Türkiye

Geliş / Received: 04/11/2022, Kabul / Accepted: 09/12/2022

MDPI

Article

Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia

Ümit Altuntaş 1,2,+0, İsmail Güzel 30 and Beraat Özçelik 1,40

¹ Department of Food Engineering, Istanbul Technical University, 34469 Istanbul, Turkey

- ² Department of Food Engineering, Gümüşhane University, 29000 Gümüşhane, Turkey
- ³ Department of Mathematical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
- ⁴ Bioactive Research & Innovation, Food Manuf. Indust. Trade Ltd., Teknokent ARI-3, 34469 Istanbul, Turkey
- * Correspondence: ualtuntas@itu.edu.tr

Experimental Contributions

BAP, TÜBİTAK, Michigan State University, Other Works

BASARIM2022

SIAM Data Mining: TDA, ML

Future Work

On this thesis

- Apply real-world dataset for the first degree of homology.
- Visualization tools for the first degree of homology.
- Apply to the categorical dataset.
- Deal with problems about computational power and memory.

Other tasks

- Relation between Lyapunov exponent and persistent homology
- Two dimension bifurcation and CROCKER
- Classification Alpha-stable processes via TDA

Thank You!

Seperation of complex

Chain Complex

A chain complex of a simplicial complex \mathscr{K} is a sequence of abelian groups or modules \mathscr{C}_k connected by homomorphisms $\partial_k : \mathscr{C}_k \to \mathscr{C}_{k-1}$ such that $\partial_{k-1} \circ \partial_k = 0$ for $k \in \mathbb{Z}$.

$$\dots \xrightarrow{\partial_{k+2}} \mathscr{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathscr{C}_k \xrightarrow{\partial_k} \dots$$
$$\partial_k \sigma = \sum_{i=0}^k (-1)^i [v_0, v_1, \dots, \hat{v}_i, \dots, v_k]$$

Homology and Betti Number

The k^{th} homology group of a simplicial complex K is defined by

$$\mathcal{H}_k(\mathcal{K}) := \frac{\ker(\partial_k)}{\operatorname{im}(\partial_{k+1})}$$

The dimension of the k^{th} homology group of K is called the k^{th} Betti number $\beta_k(K)$.

Well-defined Persistence barcode

• Persistence modules

$$V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_r \rightarrow \cdots \rightarrow V_s \rightarrow \cdots \rightarrow V_n$$

• Decompose persistence module into interval modules,

$$0 \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow \mathbb{Z}_2 \rightarrow \cdots \rightarrow \mathbb{Z}_2 \rightarrow 0 \rightarrow \cdots 0$$

- A persistence module V indexed by $T \subset \mathbb{R}$ is q tame if for any v < s in T, the rank of the linear map $v_r^s : V_r \to V_s$ is finite.
- If $\mathbb V$ is a q-tame persistence module, then it has a well-defined persistence barcode.

Go Back

Combinatoric Possibilities

• Check whether $\psi_{\varepsilon_1,\varepsilon_2}^k(\alpha)$ and $\psi_{\varepsilon_1,\varepsilon_2}^k(\beta)$ are linearly independent by evaluating the rank of the differential matrix \mathscr{D} at ε_2 with appending α' , β' and α',β' together.

$$egin{aligned} &r_lpha := ext{rank}(\mathscr{D}_lpha) - ext{rank}(\mathscr{D}) \ &r_eta := ext{rank}(\mathscr{D}_eta) - ext{rank}(\mathscr{D}) \ &r_{lpha,eta} := ext{rank}(\mathscr{D}_{lpha,eta}) - ext{rank}(\mathscr{D}) \end{aligned}$$

with the following cases:

 $\begin{cases} \alpha \text{ and } \beta \text{ both die} & \text{ if } r_{\alpha,\beta} = 0, \\ \alpha \text{ and } \beta \text{ both live} & \text{ if } r_{\alpha,\beta} = 2, \\ \alpha \text{ dies and } \beta \text{ lives} & \text{ if } r_{\alpha,\beta} = 1 \text{ and } r_{\alpha} = 0, \\ \alpha \text{ lives and } \beta \text{ dies} & \text{ if } r_{\alpha,\beta} = 1 \text{ and } r_{\beta} = 0, \\ \alpha \text{ and } \beta \text{ merge} & \text{ if } r_{\alpha,\beta} = 1, r_{\alpha} = 1 \text{ and } r_{\beta} = 1. \end{cases}$

Matroids

Definition

A partially ordered set is defined as an ordered pair $P = (X, \leq)$. Here, X is called the ground set of P and \leq is the partial order of P

Definition

A matroid $M = (S, \mathbb{I})$ is a finite ground set S together with a collection of sets $\mathbb{I} \subset 2^S$ satisfying

- Downward closed: $A \in \mathbb{I}$ and $B \subseteq A \Rightarrow B \in \mathbb{I}$
- Exchange property: $A, B, \in \mathbb{I}$ and $|B| < |A| \Rightarrow \exists x \in A \setminus B$ such that $\{x\} \bigcup B \in \mathbb{I}$.

Matroids

Terminology

- Independent set: $I \in \mathbb{I}$
- Circuit: Minimal dependent set of M
- Basis: Maximal independent set of M
- Span: Basis B and $B \subseteq \mathbb{I} \Rightarrow \mathbb{I}$ is a spanning set.
- Ground set \mathbb{V} : set of vectors spanning \mathbb{R}^d
- Independent set \mathbb{I} : bases of \mathbb{R}^d in \mathbb{V}
- Matroid: (\mathbb{V},\mathbb{I})

The Rank Function of a Matroid

Definition

Let *M* be a matroid on a finite ground set *E*. The rank r(X) of a subset $X \subseteq E$ is the cardinality of the largest independent set contained in *X*. In other words

$$r(X) = \max\{|A| \in N \mid A \subseteq X \text{ and } A \in \mathscr{I}\}$$

Cobordisms

For two linearly independent pair of homology classes α and β in $H_1(R_{\varepsilon})$, one can see $\psi_{\varepsilon,\eta}^1(\alpha)$ and $\psi_{\varepsilon,\eta}^1(\beta)$ are linearly dependent in $H_1(R_{\eta})$. We, then, visualize that two classes α and β merged at time η .

Figure: Cobordism in the merging case from $S^1 \sqcup S^1$ to S^1 representing two cycles α and β evolve in $[\alpha,\beta]$ from ε to η .