WORKSHEET \# III

1. Find the asymtotes of the curve $f(x)=x+\sqrt{x^{2}-1}$.
2. Let $f(x)=\left\{\begin{array}{cll}x+3 & -3 \leq x<-1, & \text { a) Graph } f(x) . \\ -1 & x=-1, & \\ -x+1 & -1<x \leq 1, & \text { b) Find the points, if any, at which the function } \\ \frac{1}{x-1} & 1<x \leq 2, & f(x) \text { is discontinuous and classify the types of } \\ x & x>2 . & \text { the discontinuities. }\end{array}\right.$
3. For the following functions find the discontinuity points, if any, and classify the types of the discontinuities.
a) $f(x)= \begin{cases}\sin ^{-1} \frac{x}{3} & 0<x<3 \\ \frac{\pi}{2} & x=0 \text { and } x=4 \\ 2^{\frac{1}{x-4}} & 3 \leq x<4 \text { and } x>4\end{cases}$
b) $f(x)= \begin{cases}\frac{1-\cos x}{x^{2}} & x \neq 0 \\ 1 & x=0\end{cases}$
4. Let $f(x)=x^{3}-2 x+2$. Show that f must have a zero between -2 and 0 .
5. Show that the following functions have at least one root.
(a) $f(x)=\sqrt[3]{x}+x-2$
(b) $f(x)=\cos x+\sin x-x$
6. Suppose that f and g are continuous on $[a, b]$ and that $f(a)<g(a)$ but $f(b)>g(b)$. Prove that $f(c)=g(c)$ for some $c \in[a, b]$.
7. Consider the function $f(x)=x^{2}-3 x$. Use the limit definition to find the slope of the tangent line at $x=2$. Write the equation for the tangent and normal line.
8. Find the equation for the tangent line to the function $f(x)=\frac{1}{x-1}$ with the slope -1 .
9. Does any tangent to the curve $y=\sqrt{x-1}$ cross the x-axsis at $x=-3$? If so, find an equation for the line and the point of tangency.
10. Find the points at which the function $f(x)=x^{2}+4 x-1$ has the horizontal tangent.
11. Find the values of a and b that make $f(x)$ differentiable at $x=0$?

$$
f(x)=\left\{\begin{array}{cc}
a x+b & x<0 \\
2 \sin x+3 \cos x & x \geq 0
\end{array}\right.
$$

12. Consider the function

$$
f(x)=\left\{\begin{array}{cl}
3 x, & x<0 \\
-(2-x)^{2}, & 0 \leq x \leq 2 \\
x^{2}-4, & x>2
\end{array}\right.
$$

(a) Analyze the continuity of $f(x)$ at $x=0$ and $x=2$?
(b) Analyze the differentiability of $f(x)$ at $x=0$ and $x=2$?

Give reasons for your answers.

