A Case Study on Identifying Bifurcation and Chaos with CROCKER Plots

İsmail Güzel (join with Elizabeth Munch, Firas Khasawneh)

İTÜ-Math. & MSU-CMSE

April 28, 2022

Outline

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Outline

- Dynamical System

 Bifurcation Diagram
 Lyapunov Exponent

 Topological Features
 CROCKER

 Norm of CROCKER
 - 4 Experiments
 - Rössler System
 - Lorenz System

Outline

Dynamical System

Dynamical system is a system that changes over time according to a set of fixed rules that determine how one state of the system moves to another state.

$$\dot{x} = \sigma(y - x), \quad \dot{y} = x(\rho - z) - y, \quad \dot{z} = xy - \beta z$$

where $\sigma = 10$, $\beta = 8/3$ and $\rho = 105$ with the initial conditions [0, 0, -1].

Bifurcation diagram is a way to study how a system depends on a parameter.

The Lorenz system is

$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z, \end{aligned}$$

Bifurcation diagram is a way to study how a system depends on a parameter.

The Lorenz system is

$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z, \end{aligned}$$

Bifurcation diagram is a way to study how a system depends on a parameter.

The Lorenz system is

$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z, \end{aligned}$$

Bifurcation diagram is a way to study how a system depends on a parameter.

The Lorenz system is

$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z, \end{aligned}$$

Lyapunov exponent

Lyapunov exponent

• stable if $\lambda < 0$.

Topological Structure

Given a point cloud X, the Vietoris-Rips is defined to be the simplicial complex whose simplices are built on vertices that are at most ε apart,

$$R_{\varepsilon}(X) = \{ \sigma \subset X \mid d(x, y) \leq \varepsilon, \text{ for all } x, y \in \sigma \}.$$

Betti Vector and Persistence Barcode

The p^{th} dimensional Betti vector is defined as

$$\mathsf{Bv}_{p}(X; P) = (\beta_{p}(R_{\epsilon_{0}}), \beta_{p}(R_{\epsilon_{1}}), \dots, \beta_{p}(R_{\epsilon_{N}}))$$

Betti Vector and Persistence Barcode

The p^{th} dimensional Betti vector is defined as

$$\mathsf{Bv}_{p}(X; P) = (\beta_{p}(R_{\epsilon_{0}}), \beta_{p}(R_{\epsilon_{1}}), \dots, \beta_{p}(R_{\epsilon_{N}}))$$

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

April 28, 2022

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Contour Realization Of Computed k-dimensional hole Evolution in the Rips complex¹

CROCKER

For a given collection of point clouds $\mathcal{X} = \{X_1, X_2, \cdots, X_T\}$, *CROCKER* of this collection can be given as

$$CROCKER(\mathcal{X}) = (Bv(X_1; P), Bv(X_2; P), \dots, Bv(X_T; P)),$$

where $Bv(\bullet)$ is the p^{th} dimension Betti vector for the partition $P = \{\epsilon_1, \epsilon_2, \dots, \epsilon_l\}.$

[Topaz et al., 2015, Ulmer et al., 2019, Bhaskar et al., 2019, Xian et al., 2022]

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Algorithm

The Rössler system is

- $\dot{x}=-y-z,$
- $\dot{y} = x + ay,$
- $\dot{z}=b+z(x-c),$
- the fixed parameters b = 2, c = 4 and control parameter *a*.

- For each control parameter a,
 - Obtain the states of the nonlinear system.
 - Calculate the full persistence barcode.
- Find the overall maximum death time d_{max} for each dimension p ∈ {0,1}.
- Get 100 equally-spaced values of $\varepsilon \in [0, d_{max}]$.
- In For each persistence barcodes,
 - Obtain Betti vectors for each dimension $p \in \{0, 1\}$.
- Create CROCKER

 $\dot{x} = -y - z$,

 $\dot{y} = x + ay$,

 $\dot{x} = -y - z$,

 $\dot{y} = x + ay$,

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Lyapunov exponent and L_1 norm

April 28, 2022 13 / 21

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Pearson correlation coefficient

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

The Lorenz system is

$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z. \end{aligned}$$

The parameters $\sigma = 10, \ \beta = 8/3$ and varying ρ .

The Lorenz system is

$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z. \end{aligned}$$

The parameters $\sigma = 10, \ \beta = 8/3$ and varying ρ .

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Lorenz System

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Lorenz System

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Lyapunov exponent and L_1 norm

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Pearson correlation coefficient

Future Work

- Calculate Betti vectors without full persistence barcodes.
- Nonlinear relation between the Lyapunov exponent and L_1 norms.
- Two or more parameter bifurcations.

References

Bhaskar, D., Manhart, A., Milzman, J., Nardini, J. T., Storey, K. M., Topaz, C. M., and Ziegelmeier, L. (2019).

Analyzing collective motion with machine learning and topology. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12):123125.

- Topaz, C. M., Ziegelmeier, L., and Halverson, T. (2015).
 Topological data analysis of biological aggregation models.
 PLOS ONE, 10(5):1–26.
- Ulmer, M., Ziegelmeier, L., and Topaz, C. M. (2019).
 A topological approach to selecting models of biological experiments. *PLOS ONE*, 14(3):1–18.
- Xian, L., Adams, H., Topaz, C. M., and Ziegelmeier, L. (2022).
 Capturing dynamics of time-varying data via topology.
 Foundations of Data Science, 4(1):1–36.

İsmail Güzel (İTÜ-Math. & MSU-CMSE)

Thank You!

