

Classification of Stochastic Processes with Topological Data Analysis

İsmal Güzel & Atabey Kaygun

Mathematics Engineering - İTÜ

May 11, 2022

Outline

1 Stochastic Process

- 2 Topological Data Analysis
- 3 Feature Engineering
- 4 Results
 - Balanced and Unbalanced

Stochastic Processes

Wiener Process

• For $0 \le s < t < u < v \le T$, $X_t - X_s$ and $X_v - X_u$ are independent.

• For $0 \le s < t \le T$,

 $X_t - X_s \sim \sqrt{t-s}N(0,1)$

Cauchy Process

• For $0 \le s < t < u < v \le T$, $X_t - X_s$ and $X_v - X_u$ are independent.

• For
$$0 \le s < t \le T$$
,

$$X_t - X_s \sim Cauchy(t-s;0,1)$$

Cauchy process is a Brownian motion with a Levy subordinator.

Can we distinguish these processes by using statistical or topological features?

[Applebaum, 2009]

Ismail Guzel (İTÜ)

Topological Structure

Given a point cloud X, the Vietoris-Rips is defined to be the simplicial complex whose simplices are built on vertices that are at most ε apart,

$$R_{\varepsilon}(X) = \{ \sigma \subset X \mid d(x, y) \leq \varepsilon, \text{ for all } x, y \in \sigma \}.$$

Persistent Homology¹ and Persistence Barcodes²

 ε_0 ε_1 ε_2 ε_3 ε_4

¹[Carlsson, 2009]

²[Ghrist, 2008]

Ismail Guzel (İTÜ)

 ε_5

Persistent Homology and Persistence Barcodes

Persistence Barcodes and Betti Curves

Persistence Landscapes

• Diagram
$$D = \{(a_i, b_i)\}_{i \in I}$$
 and for $a < b$

•
$$f_{(a,b)}(t) = \max(0, \min(a+t, b-t))$$

•
$$\lambda_k(t) = \operatorname{kmax}\left\{f_{(a_i,b_i)}(t)\right\}_{i\in I}$$

[Bubenik, 2020]

Ismail Guzel (İTÜ)

Persistence Landscapes

• Diagram
$$D = \{(a_i, b_i)\}_{i \in I}$$
 and for $a < b$

•
$$f_{(a,b)}(t) = \max(0, \min(a+t, b-t))$$

•
$$\lambda_k(t) = \operatorname{kmax}\left\{f_{(a_i,b_i)}(t)\right\}_{i\in I}$$

[Bubenik, 2020]

Ismail Guzel (İTÜ)

Takens' Delay Embedding

- $T = (x_1, x_2, x_3, \cdots, x_n) \implies PC = \{v_i\}_i$, where $v_i = \{x_i, x_{i+\tau}, \dots, x_{i+(d-1)\tau}\}$
- Parameters: $\tau = 3$ and d = 2
- $PC = \{(x_1, x_4), (x_2, x_5), \cdots, (x_{n-3}, x_n)\}$

Takens' Delay Embedding

•
$$T = (x_1, x_2, x_3, \cdots, x_n) \implies PC = \{v_i\}_i$$
, where $v_i = \{x_i, x_{i+\tau}, \dots, x_{i+(d-1)\tau}\}$

• Parameters: $\tau = 3$ and d = 2

•
$$PC = \{(x_1, x_4), (x_2, x_5), \cdots, (x_{n-3}, x_n)\}$$

Wasserstein Distance

$$\mathcal{N}_1(D, D_{\emptyset}) = \sum_{i \in I} \frac{d_i - b_i}{2}$$

Bottleneck Distance

$$d_B(D, D_{\emptyset}) = \sup_{i \in I} \frac{d_i - b}{2}$$

From the persistence diagram $D = \{(b_i, d_i)\}_{i \in \mathbb{I}}$ with $\ell_i = d_i - b_i$ and $L_D = \sum_{i \in \mathbb{I}} \ell_i$.

Adcock-Carlsson Coordinates

• $f_1(D) = \sum_{i \in \mathbb{I}} b_i \ell_i$

•
$$f_2(D) = \sum_{i \in \mathbb{I}} (d_{max} - d_i) \ell_i$$

•
$$f_3(D) = \sum_{i \in \mathbb{I}} b_i^2 \ell_i^4$$

• $f_4(D) = \sum_{i \in \mathbb{I}} (d_{max} - d_i)^2 \ell_i^4$

Persistence Entropy

$$E(D) = -\sum_{i} \frac{\ell_{i}}{L_{D}} \log\left(\frac{\ell_{i}}{L_{D}}\right)$$

Experiments

Simulation

- Generate 1000 time series with same length of 500
- Label to Wiener and Cauchy

Feature Engineering

- Raw features
 - Statistical features
 - Mean
 - Ø Variance
 - Intropy
 - 4 Lumpiness

Topological features

- BottlenecekWasserstein
- Persistence entropy

- Stability
- 6 Hurst

(a) f_1 (b) f_2

 f_4

 $6 f_3$

- Std 1st-der
- Interview Linearity

- Ø Binarize mean
- O Unitroot KPSS
- Histogram mode

- **3** L_1 Norm of Betti curve
- L₁ Norm of Persistence landscapes

Correlation between features

Classification algorithms on balanced dataset

Classification Models:

- LGR: Logistic Regression
- DCT: Decision Tree
- KNN: k-Nearest Neighbor
- RFT: Ranfom Forest
- SVC: Support Vector
- MLP: Multi Layer
- LDA: Linear Discriminant
- XGB: XGBoost

Confusion matrices for KNN

Balanced Dataset

Confusion matrices for KNN

Different rates on the unbalanced dataset

Majority class (Wiener) has a sample size : 1000 Minority class (Cauchy) is varied between 1% and 20% of the majority class

What about the computation cost?

We thank Turkish National Center for High Performance Computing (UHeM), **Cluster Features:**

Intel Xeon E5-2680 CPU (28 Cores) with 128GB RAM

We test on:

- 50 Cauchy processes
- with randomly changing length between 500 and 1500
- for each experiments run 7 times

Features		Mean	Std
Topological	Parallel	45.9 s	321 ms
	Serial	111 s	1900 ms
Statistical	Parallel	1.12 s	40.3 ms
	Serial	2.10 s	3.16 ms

Future Work

- Theoretical explanation of Levy subordinator.
- Compare with other features such as discrete Fourier transforms, power spectral densities, etc.
- Apply real world problems.

References

- Applebaum, D. (2009). Lévy processes and stochastic calculus. Cambridge university press.
- Bubenik, P. (2020).

The persistence landscape and some of its properties.

In Topological data analysis. Proceedings of the Abel symposium 2018, Geiranger, Norway, June 4–8, 2018, pages 97–117. Cham: Springer.

Carlsson, G. (2009). Topology and data.

Bulletin of the American Mathematical Society, 46(2):255–308.

Ghrist, R. (2008). Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society, 45(1):61–75.

Ismail Guzel (İTÜ)

Thank You!

iguzel@itu.edu.tr

